A Qualitative Account of Discrete Space
نویسندگان
چکیده
Computations in geographic space are necessarily based on discrete versions of space, but much of the existing work on the foundations of GIS assumes a continuous infinitely divisible space. This is true both of quantitative approaches, using R, and qualitative approaches using systems such as the Region-Connection Calculus (RCC). This paper shows how the RCC can be modified so as to permit discrete spaces by weakening Stell’s formulation of RCC as Boolean connection algebra to what we now call a connection algebra. We show how what was previously considered a problem—with atomic regions being parts of their complements—can be resolved, but there are still obstacles to the interplay between parthood and connection when there are finitely many regions. Connection algebras allow regions that are atomic and also regions that are boundaries of other regions. The modification of the definitions of the RCC5 and RCC8 relations needed in the context of a connection algebra are discussed. Concrete examples of connection algebras are provided by abstract cell complexes. In order to place our work in context we start with a survey of previous approaches to discrete space in GIS and related areas.
منابع مشابه
Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملتوسعه مدل شبکه -دانه مجزای بتن برای سنگدانههای غیردایروی
In this paper, Lattice-Discrete Particle Model (LDPM) of concrete has been extended in 2-D to account for the effect of non-circular aggregates. To this end, the flexible equation of super-ellipse is employed for generating aggregates in order to add the simulation possibility of a greater spectrum of aggregate samples in 2-D to lattice-Discrete particle Model. Alongside this extention, require...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملA note on Volterra and Baire spaces
In Proposition 2.6 in (G. Gruenhage, A. Lutzer, Baire and Volterra spaces, textit{Proc. Amer. Math. Soc.} {128} (2000), no. 10, 3115--3124) a condition that every point of $D$ is $G_delta$ in $X$ was overlooked. So we proved some conditions by which a Baire space is equivalent to a Volterra space. In this note we show that if $X$ is a monotonically normal $T_1...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کامل